non-abelian, supersoluble, monomial
Aliases: C33.3D9, C27⋊C3⋊1S3, (C3×C9).3D9, C9.4He3⋊C2, (C32×C9).17S3, C32.10(C9⋊S3), C9.2(He3⋊C2), C3.6(C32⋊2D9), (C3×C9).9(C3⋊S3), SmallGroup(486,55)
Series: Derived ►Chief ►Lower central ►Upper central
C9.4He3 — C33.D9 |
Generators and relations for C33.D9
G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=c, ab=ba, ac=ca, dad-1=ab-1c, eae=a-1bc-1, ebe=bc=cb, dbd-1=bc-1, cd=dc, ece=c-1, ede=c-1d8 >
Subgroups: 538 in 56 conjugacy classes, 14 normal (11 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, D9, C3×S3, C3⋊S3, C27, C3×C9, C3×C9, C33, D27, C3×D9, C9⋊S3, C3×C3⋊S3, C27⋊C3, C32×C9, C27⋊C6, C3×C9⋊S3, C9.4He3, C33.D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C32⋊2D9, C33.D9
Character table of C33.D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 27A | 27B | 27C | 27D | 27E | 27F | 27G | 27H | 27I | |
size | 1 | 81 | 2 | 3 | 3 | 6 | 6 | 6 | 81 | 81 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ8 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ12 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ16 | 3 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ3 | ζ32 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ65 | ζ6 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ32 | ζ3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ6 | ζ65 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | 0 | 0 | -3 | 0 | 3 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | 0 | -3 | 0 | 0 | 0 | 3 | -3 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | 0 | 3 | -3 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | -3 | 0 | 3 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | 0 | -3 | 0 | 0 | -3 | 0 | 3 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | 0 | -3 | 0 | 0 | 0 | 3 | -3 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | 0 | 6 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
ρ30 | 6 | 0 | 6 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
(1 19 10)(2 11 20)(3 12 21)(4 22 13)(5 14 23)(6 15 24)(7 25 16)(8 17 26)(9 18 27)
(1 19 10)(2 11 20)(4 22 13)(5 14 23)(7 25 16)(8 17 26)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)
G:=sub<Sym(27)| (1,19,10)(2,11,20)(3,12,21)(4,22,13)(5,14,23)(6,15,24)(7,25,16)(8,17,26)(9,18,27), (1,19,10)(2,11,20)(4,22,13)(5,14,23)(7,25,16)(8,17,26), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)>;
G:=Group( (1,19,10)(2,11,20)(3,12,21)(4,22,13)(5,14,23)(6,15,24)(7,25,16)(8,17,26)(9,18,27), (1,19,10)(2,11,20)(4,22,13)(5,14,23)(7,25,16)(8,17,26), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24) );
G=PermutationGroup([[(1,19,10),(2,11,20),(3,12,21),(4,22,13),(5,14,23),(6,15,24),(7,25,16),(8,17,26),(9,18,27)], [(1,19,10),(2,11,20),(4,22,13),(5,14,23),(7,25,16),(8,17,26)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24)]])
G:=TransitiveGroup(27,156);
Matrix representation of C33.D9 ►in GL6(𝔽109)
0 | 108 | 0 | 0 | 0 | 0 |
1 | 108 | 0 | 0 | 0 | 0 |
35 | 39 | 0 | 1 | 0 | 0 |
35 | 35 | 108 | 108 | 0 | 0 |
43 | 24 | 0 | 0 | 0 | 1 |
42 | 43 | 0 | 0 | 108 | 108 |
0 | 108 | 0 | 0 | 0 | 0 |
1 | 108 | 0 | 0 | 0 | 0 |
35 | 39 | 1 | 0 | 0 | 0 |
35 | 39 | 0 | 1 | 0 | 0 |
43 | 24 | 0 | 0 | 0 | 1 |
42 | 43 | 0 | 0 | 108 | 108 |
108 | 1 | 0 | 0 | 0 | 0 |
108 | 0 | 0 | 0 | 0 | 0 |
74 | 74 | 0 | 1 | 0 | 0 |
74 | 70 | 108 | 108 | 0 | 0 |
67 | 66 | 0 | 0 | 0 | 1 |
66 | 85 | 0 | 0 | 108 | 108 |
0 | 0 | 108 | 1 | 0 | 0 |
0 | 105 | 107 | 108 | 0 | 0 |
73 | 108 | 39 | 74 | 1 | 0 |
73 | 108 | 39 | 74 | 0 | 1 |
44 | 5 | 24 | 66 | 0 | 0 |
71 | 55 | 24 | 66 | 0 | 0 |
0 | 108 | 104 | 86 | 0 | 0 |
0 | 18 | 86 | 91 | 0 | 0 |
6 | 41 | 67 | 24 | 0 | 0 |
65 | 14 | 67 | 24 | 0 | 0 |
71 | 37 | 74 | 39 | 27 | 77 |
44 | 5 | 74 | 39 | 50 | 82 |
G:=sub<GL(6,GF(109))| [0,1,35,35,43,42,108,108,39,35,24,43,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[0,1,35,35,43,42,108,108,39,39,24,43,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[108,108,74,74,67,66,1,0,74,70,66,85,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[0,0,73,73,44,71,0,105,108,108,5,55,108,107,39,39,24,24,1,108,74,74,66,66,0,0,1,0,0,0,0,0,0,1,0,0],[0,0,6,65,71,44,108,18,41,14,37,5,104,86,67,67,74,74,86,91,24,24,39,39,0,0,0,0,27,50,0,0,0,0,77,82] >;
C33.D9 in GAP, Magma, Sage, TeX
C_3^3.D_9
% in TeX
G:=Group("C3^3.D9");
// GroupNames label
G:=SmallGroup(486,55);
// by ID
G=gap.SmallGroup(486,55);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,1195,218,548,4755,453,11344,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=c,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1*c,e*a*e=a^-1*b*c^-1,e*b*e=b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c,e*c*e=c^-1,e*d*e=c^-1*d^8>;
// generators/relations
Export