Copied to
clipboard

G = C33.D9order 486 = 2·35

3rd non-split extension by C33 of D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: C33.3D9, C27⋊C31S3, (C3×C9).3D9, C9.4He3⋊C2, (C32×C9).17S3, C32.10(C9⋊S3), C9.2(He3⋊C2), C3.6(C322D9), (C3×C9).9(C3⋊S3), SmallGroup(486,55)

Series: Derived Chief Lower central Upper central

C1C32C9.4He3 — C33.D9
C1C3C32C3×C9C32×C9C9.4He3 — C33.D9
C9.4He3 — C33.D9
C1

Generators and relations for C33.D9
 G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=c, ab=ba, ac=ca, dad-1=ab-1c, eae=a-1bc-1, ebe=bc=cb, dbd-1=bc-1, cd=dc, ece=c-1, ede=c-1d8 >

Subgroups: 538 in 56 conjugacy classes, 14 normal (11 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, D9, C3×S3, C3⋊S3, C27, C3×C9, C3×C9, C33, D27, C3×D9, C9⋊S3, C3×C3⋊S3, C27⋊C3, C32×C9, C27⋊C6, C3×C9⋊S3, C9.4He3, C33.D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C322D9, C33.D9

Character table of C33.D9

 class 123A3B3C3D3E3F6A6B9A9B9C9D9E9F9G9H9I9J9K27A27B27C27D27E27F27G27H27I
 size 181233666818122266666666181818181818181818
ρ1111111111111111111111111111111    trivial
ρ21-1111111-1-111111111111111111111    linear of order 2
ρ320222-1-1-100222-1-1-1-1-122-1-1-1-1222-1-1-1    orthogonal lifted from S3
ρ4202222220022222222222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ520222-1-1-100222-1-1-1-1-122-1-1-1-1-1-1-1222    orthogonal lifted from S3
ρ620222-1-1-100222-1-1-1-1-122-1222-1-1-1-1-1-1    orthogonal lifted from S3
ρ720222-1-1-100-1-1-1-1-1222-1-1-1ζ9594ζ989ζ9792ζ989ζ9792ζ9594ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ820222-1-1-100-1-1-1-1-1222-1-1-1ζ9792ζ9594ζ989ζ9594ζ989ζ9792ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ92022222200-1-1-1-1-1-1-1-1-1-1-1ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ102022222200-1-1-1-1-1-1-1-1-1-1-1ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ1120222-1-1-100-1-1-122-1-1-1-1-12ζ9792ζ9594ζ989ζ989ζ9792ζ9594ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ1220222-1-1-100-1-1-1-1-1222-1-1-1ζ989ζ9792ζ9594ζ9792ζ9594ζ989ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ132022222200-1-1-1-1-1-1-1-1-1-1-1ζ9594ζ989ζ9792ζ9594ζ989ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ1420222-1-1-100-1-1-122-1-1-1-1-12ζ989ζ9792ζ9594ζ9594ζ989ζ9792ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ1520222-1-1-100-1-1-122-1-1-1-1-12ζ9594ζ989ζ9792ζ9792ζ9594ζ989ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ16313-3-3-3/2-3+3-3/2000ζ3ζ3233300000-3-3-3/2-3+3-3/20000000000    complex lifted from He3⋊C2
ρ173-13-3-3-3/2-3+3-3/2000ζ65ζ633300000-3-3-3/2-3+3-3/20000000000    complex lifted from He3⋊C2
ρ18313-3+3-3/2-3-3-3/2000ζ32ζ333300000-3+3-3/2-3-3-3/20000000000    complex lifted from He3⋊C2
ρ193-13-3+3-3/2-3-3-3/2000ζ6ζ6533300000-3+3-3/2-3-3-3/20000000000    complex lifted from He3⋊C2
ρ2060-300-3030098+3ζ997+3ζ9295+3ζ94989492998+2ζ979492ζ989492+2ζ99594929ζ989794+2ζ9200ζ95+2ζ94929000000000    orthogonal faithful
ρ2160-3003-300098+3ζ997+3ζ9295+3ζ94ζ95+2ζ949299894929ζ989794+2ζ92ζ989492+2ζ995949290098+2ζ979492000000000    orthogonal faithful
ρ2260-30003-30095+3ζ9498+3ζ997+3ζ92989492998+2ζ979492ζ989794+2ζ92ζ989492+2ζ9959492900ζ95+2ζ94929000000000    orthogonal faithful
ρ2360-30003-30098+3ζ997+3ζ9295+3ζ9498+2ζ979492ζ95+2ζ949299594929ζ989794+2ζ92ζ989492+2ζ9009894929000000000    orthogonal faithful
ρ2460-3003-300095+3ζ9498+3ζ997+3ζ9298+2ζ979492ζ95+2ζ94929ζ989492+2ζ99594929ζ989794+2ζ92009894929000000000    orthogonal faithful
ρ2560-3003-300097+3ζ9295+3ζ9498+3ζ9989492998+2ζ9794929594929ζ989794+2ζ92ζ989492+2ζ900ζ95+2ζ94929000000000    orthogonal faithful
ρ2660-300-3030095+3ζ9498+3ζ997+3ζ92ζ95+2ζ9492998949299594929ζ989794+2ζ92ζ989492+2ζ90098+2ζ979492000000000    orthogonal faithful
ρ2760-300-3030097+3ζ9295+3ζ9498+3ζ998+2ζ979492ζ95+2ζ94929ζ989794+2ζ92ζ989492+2ζ99594929009894929000000000    orthogonal faithful
ρ2860-30003-30097+3ζ9295+3ζ9498+3ζ9ζ95+2ζ949299894929ζ989492+2ζ99594929ζ989794+2ζ920098+2ζ979492000000000    orthogonal faithful
ρ29606-3+3-3-3-3-300000-3-3-3000003-3-3/23+3-3/20000000000    complex lifted from C322D9
ρ30606-3-3-3-3+3-300000-3-3-3000003+3-3/23-3-3/20000000000    complex lifted from C322D9

Permutation representations of C33.D9
On 27 points - transitive group 27T156
Generators in S27
(1 19 10)(2 11 20)(3 12 21)(4 22 13)(5 14 23)(6 15 24)(7 25 16)(8 17 26)(9 18 27)
(1 19 10)(2 11 20)(4 22 13)(5 14 23)(7 25 16)(8 17 26)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)

G:=sub<Sym(27)| (1,19,10)(2,11,20)(3,12,21)(4,22,13)(5,14,23)(6,15,24)(7,25,16)(8,17,26)(9,18,27), (1,19,10)(2,11,20)(4,22,13)(5,14,23)(7,25,16)(8,17,26), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)>;

G:=Group( (1,19,10)(2,11,20)(3,12,21)(4,22,13)(5,14,23)(6,15,24)(7,25,16)(8,17,26)(9,18,27), (1,19,10)(2,11,20)(4,22,13)(5,14,23)(7,25,16)(8,17,26), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24) );

G=PermutationGroup([[(1,19,10),(2,11,20),(3,12,21),(4,22,13),(5,14,23),(6,15,24),(7,25,16),(8,17,26),(9,18,27)], [(1,19,10),(2,11,20),(4,22,13),(5,14,23),(7,25,16),(8,17,26)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24)]])

G:=TransitiveGroup(27,156);

Matrix representation of C33.D9 in GL6(𝔽109)

01080000
11080000
35390100
353510810800
43240001
424300108108
,
01080000
11080000
35391000
35390100
43240001
424300108108
,
10810000
10800000
74740100
747010810800
67660001
668500108108
,
00108100
010510710800
73108397410
73108397401
445246600
7155246600
,
01081048600
018869100
641672400
6514672400
713774392777
44574395082

G:=sub<GL(6,GF(109))| [0,1,35,35,43,42,108,108,39,35,24,43,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[0,1,35,35,43,42,108,108,39,39,24,43,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[108,108,74,74,67,66,1,0,74,70,66,85,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[0,0,73,73,44,71,0,105,108,108,5,55,108,107,39,39,24,24,1,108,74,74,66,66,0,0,1,0,0,0,0,0,0,1,0,0],[0,0,6,65,71,44,108,18,41,14,37,5,104,86,67,67,74,74,86,91,24,24,39,39,0,0,0,0,27,50,0,0,0,0,77,82] >;

C33.D9 in GAP, Magma, Sage, TeX

C_3^3.D_9
% in TeX

G:=Group("C3^3.D9");
// GroupNames label

G:=SmallGroup(486,55);
// by ID

G=gap.SmallGroup(486,55);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,1195,218,548,4755,453,11344,3250,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=c,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1*c,e*a*e=a^-1*b*c^-1,e*b*e=b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c,e*c*e=c^-1,e*d*e=c^-1*d^8>;
// generators/relations

Export

Character table of C33.D9 in TeX

׿
×
𝔽